739 research outputs found

    Invariance principle, multifractional Gaussian processes and long-range dependence

    Get PDF
    This paper is devoted to establish an invariance principle where the limit process is a multifractional Gaussian process with a multifractional function which takes its values in (1/2,1)(1/2,1). Some properties, such as regularity and local self-similarity of this process are studied. Moreover the limit process is compared to the multifractional Brownian motion.Comment: Published in at http://dx.doi.org/10.1214/07-AIHP127 the Annales de l'Institut Henri Poincar\'e - Probabilit\'es et Statistiques (http://www.imstat.org/aihp/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Experience with statically-generated proxies for facilitating Java runtime specialisation

    Get PDF
    Issues pertaining to mechanisms which can be used to change the behaviour of Java classes at runtime are discussed. The proxy mechanism is compared to, and contrasted with other standard approaches to this problem. Some of the problems the proxy mechanism is subject to are expanded upon. The question of whether statically-developed proxies are a viable alternative to bytecode rewriting was investigated by means of the JavaCloak system, which uses statically-generated proxies to alter the runtime behaviour of externally-developed code. The issues addressed include ensuring the type safety, dealing with the self problem, object encapsulation, and issues of object identity and equality. Some performance figures are provided which demonstrate the load the JavaCloak proxy mechanism places on the system

    DIRAC framework evaluation for the Fermi\boldsymbol{Fermi}-LAT and CTA experiments

    Full text link
    DIRAC (Distributed Infrastructure with Remote Agent Control) is a general framework for the management of tasks over distributed heterogeneous computing environments. It has been originally developed to support the production activities of the LHCb (Large Hadron Collider Beauty) experiment and today is extensively used by several particle physics and biology communities. Current (FermiFermi Large Area Telescope -- LAT) and planned (Cherenkov Telescope Array -- CTA) new generation astrophysical/cosmological experiments, with very large processing and storage needs, are currently investigating the usability of DIRAC in this context. Each of these use cases has some peculiarities: FermiFermi-LAT will interface DIRAC to its own workflow system to allow the access to the grid resources, while CTA is using DIRAC as workflow management system for Monte Carlo production and analysis on the grid. We describe the prototype effort that we lead toward deploying a DIRAC solution for some aspects of FermiFermi-LAT and CTA needs.Comment: proceedings to CHEP 2013 conference : http://www.chep2013.org

    Demographic Change in European Towns 2001–11: A Cross-National Multi-Level Analysis

    Get PDF
    © 2017 Royal Dutch Geographical Society KNAG The unique contribution of this paper is to empirically compare and contrast demographic change in settlements with a population between 5,000 and under 50,000 (defined as towns) across different national urban systems in Europe with common definitions for the first time. The analysis uses a new data set based on harmonised small area data and harmonised morphological definitions of what a town is. The paper hypothesises first that a general model of demographic growth can be applied across national urban systems and secondly that regional demographic change is a significant predictor of demographic change in towns nested within those regions within this generalised model. A fixed effect multi-level regression analysis tests the importance of town-level and regional factors among towns from five national systems but also within two individual national urban systems. The findings suggest that national context still matters and within some national systems, regional context also strongly predicts demographic change in towns

    The origin of the diffuse non-thermal X-ray and radio emission in the Ophiuchus cluster of galaxies

    Full text link
    We present high resolution 240 and 607 MHz GMRT radio observations, complemented with 74 MHz archival VLA radio observations of the Ophiuchus cluster of galaxies, whose radio mini-halo has been recently detected at 1400 MHz. We also present archival Chandra and XMM-Newton data of the Ophiuchus cluster. Our observations do not show significant radio emission from the mini-halo, hence we present upper limits to the integrated, diffuse non-thermal radio emission of the core of the Ophiuchus cluster. The XMM-Newton observations can be well explained by a two-temperature thermal model with temperatures of ~=1.8 keV and ~=9.0 keV, respectively, which confirms previous results that suggest that the innermost central region of the Ophiuchus cluster is a cooling core. We also used the XMM-Newton data to set up an upper limit to the (non-thermal) X-ray emission from the cluster. The combination of available radio and X-ray data has strong implications for the currently proposed models of the spectral energy distribution (SED) from the Ophiuchus cluster. In particular, a synchrotron+IC model is in agreement with the currently available data, if the average magnetic field is in the range (0.02-0.3) microG. A pure WIMP annihilation scenario can in principle reproduce both radio and X-ray emission, but at the expense of postulating very large boost factors from dark matter substructures, jointly with extremely low values of the average magnetic field. Finally, a scenario where synchrotron and inverse Compton emission arise from PeV electron-positron pairs (via interactions with the CMB), can be ruled out, as it predicts a non-thermal soft X-ray emission that largely exceeds the thermal Bremsstrahlung measured by INTEGRAL.Comment: Accepted for publication in MNRAS; 13 pages, 8 figures. Includes minor changes. Abridged abstrac
    • 

    corecore